P R O D U C T S
420nm Narrow linewidth laser
Based on high-power, low-noise fiber amplification as well as sum frequency generation and frequency doubling technologies, Precilasers can achieve high-power, narrow-linewidth laser output at 420nm.
Features
- Narrow Linewidth
- Low RIN
- High Power
- Power Stability: <0.75%rms, 3hrs
- Excellent Beam Quality (M² <1.2)
- Never Mode-hop
- High Temperature And Vibration Resistance
Application
- Lithium Ion, Calcium Ion, Strontium Atom Cooling
- Quantum Simulation
- Bioscience
- Laser Spectrum
- Electromagnetic Induction Transparency
Main parameters
|
Specification |
|||||||||
|
Partnumber |
FL-SF-XXXX-YY-CW(1) |
||||||||
|
Wavelength |
420nm |
||||||||
|
Operation Mode |
CW |
||||||||
|
Output Power |
> 0.3W |
> 1W |
> 2W |
> 4W |
> 8W |
> 10W |
> 15W |
> 20W |
|
|
Beam Diameter |
0.7-1.0mm |
1.5-1.9mm |
|||||||
|
Monitor Output Power |
>5mW |
||||||||
|
Seed Laser Type |
FECL+fiber DFB seed laser |
double fiber DFB seed laser |
|||||||
|
Thermal Tuning Range |
> 150GHz ,Never Mode-hop |
> 350GHz ,Never Mode-hop |
|||||||
|
Output Mode |
Free Space Output |
||||||||
|
Linewidth(2)(100us) |
< 40kHz |
||||||||
|
PER |
> 20dB |
||||||||
|
Power Stability |
< 0.75% |
||||||||
|
Beam Quality |
M2<1.2 |
||||||||
|
PZT Frequency Tuning Range |
> 3GHz |
> 3GHz |
|||||||
|
PZT Frequency Tuning Bandwidth |
> 5kHz |
> 5kHz |
|||||||
|
Fast Frequency Tuning Range |
> 500MHz |
/ |
|||||||
|
Fast Frequency Tuning Bandwidth |
> 1MHz |
/ |
|||||||
|
AOM Tuning Range( Optional) |
> ± 5MHz |
||||||||
|
AOM Tuning Bandwidth( Optional) |
> 500kHz |
||||||||
|
RIN |
< 0.08%(10Hz-100MHz ,RMS) |
||||||||
|
Cooling |
Air Cooling/Water Cooling |
||||||||
|
Operation Environment & Power Supply |
|||||||||
|
Temperature |
15-30 ℃(Air Cooling) or 15-35 ℃(Water Cooling) |
||||||||
|
Power Supply |
100V-240V, AC, 50/60Hz |
||||||||
|
Communication |
RS422 |
||||||||
(1)XXXX is the laser center wavelength ,YY is the laser power ,for a 2W 420nm laser,the partnumberis FL-SF-420-2-CW
(2)Measured by self-hetrodyne method